Spatial modelling

GIS analysis of objective Walkability with ILS Walkability Index

Janina Welsch

Objective or calculated walkability

GIS based analysis and spatial modelling

- Potential of the urban environment for walking
- Overview, to what extend does it enable and/or encourage walking?
- feasible: Is there a path where I can walk?
- accessible: Are there amenities or services in walking distances?
- pleasent: Is there any green space (to make it more enjoyable to walk)?
- GIS-Tool for calculating: ILS Walkability Index
- Open source tool: Q-GIS plugin
- Open source data: OpenStreetMap (OSM), OpenRouteService (ORS)

Fina, S., Gerten, C., Pondi, B., D'Arcy, L., O'Reilly, N., Vale, D. S., Pereira, M., \& Zilio, S. (2022). OS-WALK-EU: An open-source tool to assess health-
promoting residential walkability of European city structures. Journal of Transport \& Health, 27, 101486. https://doi.org/10.1016/j.jth.2022.101486

European
Commission

Assessment at neighbourhood-level

Spatial scale and unit for analysing

- Residential areas
- Populated grid cells represent the homes of the population
- Small scale: 100 m*100m

- Starting points and calculation unit for the analyses

Modules for ILS Walkability Index

Pedestrian shed - dense network of footpaths \& permeability for pedestrians

- Walkable area: 500m walking distance along pedestrian street network
- Pedestrian shed: percentage covered by walkable area in comparison to perfect circle area
- Percentage transformed into point values between 1 and 10 ($<10 \%-\geq 90 \%$)

Green area - attractiveness for walking, foster social interaction and well being

- Green area: percentage of the walkable area covered by green elements
- Percentage transformed into point values between 1 and 10 points ($<2.5 \%-\geq 22.5 \%$)

Moduls for ILS Walkability Index

Access to services \& amenities - shorter distances are preferable

- Supermarkets and (discounter) grocery stores
- Education
- Shopping
- Other errands
- Leisure
- Points between 0 and 1 are given due to rings of walking radius (e.g. inner ring 0-250m)
- Add-up values (summed and weighted by category) are transformed into final values between 1 and 10

ILS Walkability Index - final score

Final score for ILS-Walkability Index

- For each module there is a weight factor, it represents how important the module is
- 0,4 for pedestrian shed
- 0,6 for green area
- 1,0 for amenities and services
- Final value for each grid cell is calculated
- Weighted values of modules are summed up
- sums are converted into a scale from 0 to $100^{\#}$
\# optional: final slope penalty of up to -5%

Score-illustration in the maps

- Each grid cell is colour-coded according to the final value

ILS Walkability Index
<25
25-<50
50 - < 75
75 - <90
90-100

ILS Walkability Index - Dortmund (all age groups)
its

Kreuzviertel (Dortmund)
Ø 74,2

Data: Statistisches Bundesamt (2015); OSM Contributors (2023); ILS (2023) Geodata: OpenStreetMap

1:15.000
0 1 km

Medio Ponente (Genoa) $\emptyset 57,6$

ILS Walking Index - Genoa (all age groups + slope)
ils

Centro Est (Genoa)
$\emptyset 63,5$

